

When properly installed, operated and maintained, this equipment will provide a lifetime of service. It is mandatory that the person who operates, inspects, or maintains this equipment thoroughly read and understand this manual, before proceeding.

This manual applies to VS-616GII Model CIMR-H0.4G2, -H0.75G2 $-H 2.2 \mathrm{G} 2,-\mathrm{H} 3.7 \mathrm{G} 2,-\mathrm{H} 5.5 \mathrm{G} 2,-\mathrm{H} 7.5 \mathrm{G} 2,-\mathrm{H} 11 \mathrm{G} 2$, and -H 15 G 2.

The VS-616GII Drive is an AC variable speed drive system for high-precision variable speed applications: It basically consists of a three-phase squirrelcage induction motor, a VS-616GII controller (VS-616GII), an operator control station, and optional control units. This manual primarily describes VS616GII, but contains basic information for operator control station as well. For details of the operation of individual units, refer to their respective manuals.

Enclosed Type (NEMA-1)

Open Chassis Type

CONTENTS

Page

1. RECEIVING 3
2. VS-616GII MAJOR CONTROL COMPONENT LAYOUT 4
3. INSTALLATION 4
31 LOCATION 4
32 POSITIONING 5
3 M MOUNTING DIMENSIONS 5
4. WIRING 6
41 INTERCONNECTIONS 6
42 MOLDED-CASE CIRCUIT BREAKER (MCCB) AND POWER SUPPLY MAGNETIC CONTACTOR (MC) 8
43 SURGE ABSORBER 8
44 WIRING INSTRUCTIONS 9
441 Control Circuit 9
442 Main Circuit Input/Output 9
443 Grounding 10
5. TEST RUN 11
51 CHECKS BEFORE TEST RUN 11
52 SIMPLE OPERATION USING DIGITAL OPERATOR 11
521 Set and Operate Frequency Command 12
522 Monitor Function of Digital Operator 13
53 ADJUSTMENT AND SETTING 14
6. OPERATION AT LOAD 17
7. FAILURE INDICATION AND DETAILS 18
71 DISPLAYING THE SEQUENCE OF FAILURE OCCURRENCE 19
72 STORAGE FUNCTION AT POWER FAILURE 20
8. TROUBLESHOOTING 21
81 TROUBLESHOOTING FOR MOTOR SYMPTOM 21
APPENDIX 1 STANDARD SPECIFICATIONS 23
APPENDIX 2 TERMINAL FUNCTIONS 24
A2-1 Terminals of Main Circuit 24
A2-2 Terminals of Control Circuit 24
APPENDIX 3 INTERNAL CIRCUIT AND INTERCONNECTION DIAGRAMS 27
A3-1 With Braking Resistor Unit (For Model CIMR-H75G2 and Below) 27
APPENDIX 4 SYSTEM CONSTANTS 28
A4-1 Ineverter Capacity Selection (Sn-10) 28
A4-2 Setting of V/f Pattern Selector Switch ($\mathrm{Sn}-02$) 29
A4-3 Run Signal Selection ($\mathrm{Sn}-\mathrm{O4}$) 30
A4-4 Protective Characteristics Selection (Sn-05) 31
A4-5 Overtorque Detection ($\mathrm{Sn}-06$) 32
A4-6 Optional Function Selection ($\mathrm{Sn}-07$) 32
A4-7 Terminal Function ($\mathrm{Sn}-08$ to $\mathrm{Sn}-11$) 32
A4-8 Contact Output Selection Function (Sn-12) 39
APPENDIX 5 CONTROL CONSTANTS 40
APPENDIX 6 OTHER CONSTANTS (FUNCTIONS) 46
A6-1 Retry Operation Fault 46
A6-2 Full Range DC Braking Stop (DB) 47
A6-3 Range to Prohibit Frequency Setting 48
A6-4 Stall Prevention During Operation 49
APPENDIX 7 OPTION 50
APPENDIX 8 CHECK FUNCTION 51
APPENDIX 9 WIRE SIZE 52

DANGER

- Do not touch circuit components until "CHARGE" lamp is extinguished after turning off the AC main circuit power supply. The capacitors are still charged and can be quite dangerous.
- Do not connect or disconnect wires and connectors while power is applied to the the circuit.
- Do not check signals during operation.

IMPORTANT

- Be sure to ground VS-616GII using the ground terminal (C) (E)). See par. 4.4.3 on page 10.
- Never connect main circuit output terminals (T1) (IU)), (T2) ((V)), T3) (W) to AC main circuit power supply.
- All the potentiometers of VS-616GII have been adjusted at the factory. Do not change their settings unnecessarily.
- Do not make withstand voltage test on any part of the VS-616GI unit, because it is electronic equipment using semi-conductors and vulnerable to high voltage.
- Control PC board employs CMOS IC's which are easily damaged by static electricity. Take care not to touch the CMOS elements inadvertently.

1. RECEIVING

This VS-616GII has been put through demanding tests at the factory before shipment. After unpacking, check for the following.

- Verify the part numbers with the purchase order sheet and/or packing slip.
- Transit damage.

If any part of VS-616GII is damaged or lost, immediately notify the shipper.

2. VS-616GII MAJOR CONTROL COMPONENT LAYOUT

VS-616GII major control component is shown in Fig. 1.

TERMINAL ARRANGEMENT

$(G)(E)$	(B)	$(B 2)$	$(C 1)$	$(C 2)$

3. INSTALLATION

3. 1 LOCATION

Location of the equipment is important to achieve proper performance and normal operating life. The VS-616GII units should be installed in areas where the following conditions exist.

- Ambient temperature: -10 to $+40^{\circ} \mathrm{C}$ (For enclosed or totally enclosed type), -10 to $+50^{\circ} \mathrm{C}$ (For open chassis type)
- Protected from rain or moisture.
- Protected from direct sunlight.
- Protected from corrosive gases or liquids.
- Free from airborne dust or metallic particles.
- Free from vibration.

3. 2 POSITIONING

For cooling and maintenance purposes, make sure that there is sufficient clearance around the equipment, as shown in Fig. 2.

To keep effective cooling conditions, it must be installed vertically to the ground using the four mounting screws.

(a) Front View

(b) Side View

Fig. 2 VS-616GII Clearance Requirements for Proper Cooling and Maintenance

3. 3 MOUNTING DIMENSIONS

The mounting dimensions for the VS-616GI are given in Fig. 3. and Table 1.

Fig. 3 Cabinet Mounting Holes

Table 1 Cabinet Mounting Dimensions
Dimensions in mm (inch)

Dimensions		380 TO 460 V							
		CIMR- $\mathrm{HO} 4 \mathrm{G} 2$	CIMR- H0 75G2	$\begin{aligned} & \mathrm{CIMR} \\ & \mathrm{H} 22 \mathrm{G} 2 \end{aligned}$	$\begin{aligned} & \text { CIMR- } \\ & \text { H3 7G2 } \end{aligned}$	CIMR- H5 5G2	CIMR- H75G2	CIMR- H11G2	CIMR- H15G2
W1	Open Chassis Type	$\begin{gathered} 175 \\ (689) \end{gathered}$				$\begin{gathered} 175 \\ (689) \end{gathered}$		$\begin{gathered} 200 \\ (787) \end{gathered}$	
	$\begin{aligned} & \text { Enclosed Type } \\ & \text { (NEMA } 1 \text {) } \end{aligned}$	$\begin{gathered} 230 \\ (906) \\ \hline \end{gathered}$				$\begin{gathered} 255 \\ (1004) \end{gathered}$		$\begin{gathered} 280 \\ (1102) \end{gathered}$	
H1	Open Chasis Type	$\begin{gathered} 340 \\ (1339) \end{gathered}$				$\begin{gathered} 390 \\ (1535) \end{gathered}$		$\begin{gathered} 485 \\ (1909) \end{gathered}$	
	Enclosed Type (NEMA 1)	$\begin{gathered} 300 \\ (1181) \end{gathered}$				$\begin{gathered} 400 \\ (1575) \end{gathered}$		$\begin{gathered} 500 \\ (1969) \end{gathered}$	

4. WIRING

4. 1 INTERCONNECTIONS

Fig. 4 shows the connection diagram for combination of VS-616GII with only digital operator. Remove the front cover before wiring. Connections should be made correctly, referring to Fig. 4.

(DIGITAL OPERATOR)

Note: Terminal symbol: © shows main circuit; and \bigcirc shows control circuit.

Fig. 4 Example of Interconnections for Operation with Digital Operator

Fig. 5 shows the connection diagram of VS-616GII for operation by external signals.

Fig. 5 Example of Interconections for Operation by External Signals

Notes:

1. $\frac{I}{I}$ indicates shielded leads and $\frac{\frac{T}{I}}{I}$ twisted-pair shielded leads.
2. External terminal (15) of +15 V has maximum output current capacity of 20 mA .
3. Either external teminal (13) or (14) can be used.
4. Terminal symbols: © shows main circuit; Oshows control circuit.
5. Use high reliable control relay for switching input command. Contact voltage and current; 24 V . 18 mA (typical values)

4. 2 MOLDED-CASE CIRCUIT BREAKER (MCCB) AND POWER SUPPLY MAGNETIC CONTACTOR (MC)

Be sure to connect MCCBs between power supply and VS-616GII input terminals (L1) (\mathbb{R}), (L2) ((S)), (L3) (T)). Recommended MCCBs are listed in Table 2.

When a ground fault interrupter is used to prevent malfunction, setting current should be 200 mA or over and operating time, 0.1 sec or over.

Table 2 Molded-Case Circuit Breakers and Magnetic Contactors

VS-616GII	Model CIMR-	H0 4G2	H0 75G2	H2 2G2	†3 7G2	H5 5G2	H75G2	H11G2	H15G2
	Capacity kVA	14	21	41	69	103	137	206	274
	Rated Output Current A	18	27	54	9	135	18	27	36
Mitsubishı Molded-Case Circuit Breaker	Model and Rated Current*	NF30 $5 A$	$\begin{gathered} \text { NF30 } \\ 5 A \end{gathered}$	$\begin{gathered} \text { NF30 } \\ \text { 10A } \end{gathered}$	$\begin{gathered} \text { NF30 } \\ 20 A \end{gathered}$	$\begin{gathered} \text { NF30 } \\ \text { 20A } \end{gathered}$	$\begin{gathered} \text { NF30 } \\ \text { 30A } \end{gathered}$	$\begin{gathered} \text { NF50 } \\ 50 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { NF100 } \\ \text { 60A } \end{gathered}$
Yaskawa Magnetıc Contactors Model		HI-7E	HI-7E	HI-10-2E	HI-20E	HI-20E	HI-20E	HI-30E	HI-50E

*Comply with NEMA AB1.

4. 3 SURGE ABSORBER

For the surge absorbers to be connected to the coils of relays, magnetic contactors, magnetic valves, or magnetic relays, select types from the ones listed in Table 3.

Table 3 Surge Absorbers

Coils of Magnetic Contactor and Control Relay	Surge Absorber*		
	Model	Specifications	Code No
Large-size Magnetıc Contactors	$\begin{aligned} & \text { DCR2- } \\ & \text { 50A22E } \end{aligned}$	$\begin{aligned} & 250 \text { VA.C } \\ & 05 \mu \mathrm{~F}+200 \Omega \end{aligned}$	C002417
Control Relay LY-2. -3(OMRON) HH-22, -23 (Fuıl) MM-2, - 4 (OMRON)	$\begin{aligned} & \text { DCR2- } \\ & \text { 10A25C } \end{aligned}$	$\begin{aligned} & 250 \mathrm{VAC} \\ & 01 \mu \mathrm{~F}+100 \Omega \end{aligned}$	C002482

*Made by MARCON Electronics.

IMPORTANT

Lead size should be determined considering voltage drop of leads Refer to APPENDIX 9 "WIRE SIZE".

4.4 WIRING INSTRUCTIONS

441 Control Circuit
The external interconnection wiring must be performed with following procedures.

After completing VS-616GII interconnections, be sure to check that connections are correct. Never use control circuit buzzer check.
(1) Separation of control circuit leads and main circuit leads

Signal leads (1) through (20) must be separated from main circuit leads (L1) ((R) , (L2) ((S) , L2) (T) , (B1), (B2), (T1) ((U)), T2) (V), (T3) ((W) , and another power cables to prevent erroneous operation caused by noise interference.
(2) Control circuit leads (9) (10) (18) (19) (20) (contact output) must be separated from leads (1) to (8) and (11) to (17).

Use the twisted shielded or twisted-pair shielded lead for the control circuit line and connect the shield sheath to the inverter terminal (12). See Fig. 6.

Fig. 6 Shielded Lead Termination
(3) Wiring distance

It is recommended that the wiring distance of the signal leads (1) - (20)) be 50 meters (164 feet) or below.

44.2 Main Circuit Input/Output

(1) Direction of phase rotation of power

- Phase rotation of power is available in either direction, clockwise and counterclockwise.
- When inverter output terminals (T1) (U)) T2 (V), and (T3) (W) are connected to motor terminals (T1) (U)), (T2) (V) , and (T3) ((W)), respectively, motor rotates counterclockwise, viewed from opposite drive end, upon forward operation command. To reverse the rotation interchange any two of motor leads.
(2) Never connect AC main circuit power supply to output terminals (T1) ((U)), (T2) (V), and (T3) (W).
(3) Care should be taken to prevent contact of wiring leads with VS-616GII cabinet, for short-circuit may result.
(4) Never connect power factor correction capacitor or noise filter to VS-616GII output.

4.4.3 Grounding

Make a positive grounding using ground terminal (G) (E) on the casing of VS-616GII.
(1) Ground resistance should be 100Ω or less.
(2) Never ground VS-616GII in common with welding machines, motors, and other large-current electrical equipment, or ground pole. Run the ground lead in a separate conduit from leads for large-current electrical equipment.
(3) Use ground lead listed in Table 17 (page 52) and make the length as short as possible.
(4) Where several VS-616GII units are used side by side, all the units should preferably be grounded directly to the ground poles. However, connecting all the ground terminals of VS-616GII in parallel, and ground only one of VS-616GII to the ground pole is also permissible (Fig. 7). However, do not form a loop with the ground leads.

Fig. 7 Grounding of Three VS-616GII Units

5. TEST RUN

5. 1 CHECKS BEFORE TEST RUN

After mounting and connection are completed, check for:

- Correct connections
- Short-circuit conditions
- Loose screw terminals
(Check especially for loose wire clippings.)

DETAIL OF A

5. 2 SIMPLE OPERATION USING DIGITAL OPERATOR

The following description is for the operation of a standard motor running at 60 Hz .
Wire according to Fig. 4 "Sample of Mutual Wiring" (operation using the digital operator).

Data set with the digital operator is stored after the power is turned off.

Fig. 8 Functions of digital operator keys

5.2.1 Set and Operate Frequency Command

Set frequency command in drive mode ($\frac{\text { DRIVE }}{P R G}$).
Setting:
(1) Depress Δ while depressing $\begin{gathered}\text { DSPL } \\ \text { ENTR ; then the frequency }\end{gathered}$ command appears. When this is repeated, the display changes as follows. See (3) for details.

(2) Using $\begin{gathered}\triangleright \\ R E S E T\end{gathered}$ flash can be moved to the digit to be set, and the numeric set with $\Delta \Delta$ key.
(3) Depress DSPL ENTR to store the frequency command value. (Stored data is maintained when the power is off.)
(4) Depress Δ while depressing $\begin{gathered}\text { DSPL } \\ \text { ENTR }\end{gathered}$ to select the output frequency to be indicated.

Operation

(5) Depress $\frac{F W D / R E V}{M O D E}$ to select the motor rotating direction.
(6) Depress $\frac{\text { RUN }}{\text { DATA }}$ to give run command. The motor accelerates acoording to the specified acceleration time (10 s) and holds the speed at the specified frequency.

Stop operation
(7) Depress STOP $\begin{gathered}\text { SET } \\ \text { to stop the motor. The motor decelerates according }\end{gathered}$ to the specified deceleration time (10 s).

5. 2. 2 Monitor Function of Digital Operator

(a) Output freuency display

The output frequency appears in units of 0.1 Hz .

(b) Frequency command display

The following display appears in units of 0.1 Hz , depending on the operation performed with the frequency command either from the external terminallor digital operator.
(1) Operation by frequency command from the external terminal

The frequency command specified from the external terminal appears.

(2) Operation by frequency command from the digital operator.

The frequency command specified from the digital operator appears. The digit which is flashing can be changed.
A frequency command can also be set.

(c) Output current display

The inverter output current appears in units of 0.1 A .

5. 3 ADJUSTMENT AND SETTING

The VS-616GII has the following two constants to select the function and change the characteristics. Before starting operation, set these constants to meet the operation condition.

- System constants (Sn-0l to $\mathrm{Sn}-12$): Mainly used to select V/f and the function of external terminals (Table 4).
- Control constants (Cn-01 to Cn-30): Mainly used to change characteristics (Table 5).

Table 4 System Constants (Sn-i.j)

System Constant No	Name	Function			Setting Value at Factory Shipment
$\begin{aligned} & 5 n- \\ & 01 \end{aligned}$	kVA selection	Sets printed cırcuit board constants commonly used for multiple inverters			$\begin{array}{\|l} \hline \text { Already set } \\ \left(\begin{array}{l} \text { Spare part needs } \\ \text { new setting } \end{array}\right. \end{array}$
02	V/f pattern selection	$16 \mathrm{~V} / \mathrm{f}$ patterns are available for use so that the operation suited to the motortype load characteristics and operation condition can be performed15 types V/f pattern is selectable by setting O to E (See page 29)1 type V/f pattern can be changed by setting F			
03	-	-			0000
04	Operatıon signal selection	Digit ${ }^{\text {Data }}$	0	1	
		1st	Controlled by Fregency command from the external terminal	Controlled by Frequency command from the cigital operator	
		2nd	Controlled by Run command from the external terminal	Controlled by Run command from the digital operator	
		3 rd	Main speed frequency command 0-10V/0-100\%. $420 \mathrm{~mA} / 0-100 \%$	Main speed frequency command 0-10V/100-0\%. 4-20mA/100-0\%	
		4 th	Reverse allowed	No reverse allowed	
05	Protection characterıstıcs selection	1st	Operation stops at a momentary power fallure	Operation contınues at a momentary power fallure	0000
		2nd	Operation stalls during deceleration	Operation will not stall during deceleration	
		3 rd	The electronic thermal motor protected	The electronic thermal motor not protected	
		4 th	The electronic thermal protector (reduced torque)	The electronic thermal protector (constant orque)	
06	Overtorque detection	1st	Overtorque not detected	Overtorque detected	0000
		2nd	Overtorque detected during speed synchronization	Overtorque always detected	
		3 rd	Operation contınues	Coastıng stop	
		4 th			
07	Optional function selection	1st	Used when the optional pulse monitor is installed		0000
		2nd			
		3rd			
		4 th			
08	External termınal (5)	Select terminal 5 function in accordance with table 14 (Page 33)			0
09	External terminal (6)	Select terminal 6 function n accordance with table , 4 (Page 33)			3
10	External termınal (7)	Select terminal 7 function in accordance with table 14 (Page 33)			5
11	External termınal 8	Select terminal 8 function in accordance with table 14 (Page 33)			6
12	Contact output(9.10)	Select contact output function in accordance with table 16 (Page 39)			0

Table 5 Control Constants (CO

Control Constant No	Name	Unit	Setting Range	Setting Value Prior to Factory Shipment
Crob	Max Frequency (F MAX)	01 Hz	$500-3960 \mathrm{~Hz}$	60 Hz
02	Max Voltage (V MaX)	01 V	00-4600V	400 V
03	Max Voltage Freq ($\mathrm{FA}^{\text {a }}$	01 Hz	00-3960 Hz	60 Hz
04	V/f Constant ($\mathrm{F}_{\text {B }}$)	01 Hz	O $0-3960 \mathrm{~Hz}$	3 Hz
05	V/f Constant (V c)	01 V	00-4600V	26 V
06	Min Output Freq (F min)	01 Hz	O $0-3960 \mathrm{~Hz}$	15 Hz
07	Mın Output Freq Voltage (V MIN)	01 V	00-4600V	14 V
08	Accel Time	01 s	01-18000s	100 s
09	Decel Time	01 s	01-18000s	100 s
10	DC Brakıng Voltage	01 V	00-2000V	400 V
11	DC Brakıng Time at stop	01 s	00-1000s	05 s
12	DC Braking Time at start	01 s	00-250s	00 s
13	Freq Command Gaın	001	001-200	100
14	Freq Command Bias	01%	00-255\%	00
15	Freq Command Upper Limit	1 \%	0-110\%	100%
16	Frea Command Lower Limit	1 \%	0-110\%	0 \%
17	Setting Prohibited Freq 1	01 Hz	00-3960 Hz	00 Hz
18	Setting Prohibited Freq 2	01 Hz	00-3960 Hz	00 Hz
19	Setting Prohibited Freq 3	01 Hz	$00-3960 \mathrm{~Hz}$	00 Hz
20	Motor Rated Current	01 A	01-1200A	See Table 11
21	Carrier Freq Lower	1 Hz	$380-2500 \mathrm{~Hz}$	380 Hz
22	Torque Compensatıon Gaın	01	00-99	10
23	Over Torque Detectıng Level	1 \%	30-200\%	160 \%
24	Freq Monitor Gain	001	001-200	100
25	Current Monitor Gaın	001	001-200	100
26	Inchıng Freq	01 Hz	O0-3960 Hz	60 Hz
27	Freq Command 1 for Multı-step Run	01 Hz	$00-3960 \mathrm{~Hz}$	00 Hz
28	Freq Command 2 for Multı-step Run	01 Hz	$00-3960 \mathrm{~Hz}$	00 Hz
29	Accel/Decel Time	01 s	$01-18000 \mathrm{Hs}$	100 s
30	Save Energy Gaın	1 \%	0-120\%	80 \%

5．3 ADJUSTMENT AND SETTING（Cont＇d）

［Example：Adjusting acceleration and deceleration time］
An example to set the acceleration／deceleration time using control constants 8 and 9 （ $\mathrm{Cn}-08$ and $\mathrm{Cn}-09$ ）is described below．This must be carried out while the inverter is not running．

Setting acceleration time：

（3）Using $\begin{gathered}\triangleright \\ \text { RESET }\end{gathered}$ ，move the flashing digit，select the numeric with
Δ and indicate $[n-18$（control constant 8）．

（5）Set the required acceleration time by operating | \square |
| :---: |
| RESET | and Δ ．The time can be set up to 1800 seconds at 0.1 second intervals．

（When 12.5 seconds is set，it appears 10 佂浩。）
（6）Depress $\frac{\text { STOP }}{\text { SET }}$ to temporarily store data．

Setting deceleration time：

（8）Depress Δ to indicate $[n-09$（control constant 9）．
（9）Operate the same as setting of acceleration time，and depress DSPL
After setting，depress［ \(\left.\begin{array}{|c}\hline DRIVE

\hline PRG

\hline\end{array}\right]\) to resume the drive mode． | DRIVE |
| :--- |
| PRG | Light on．）

6. OPERATION AT LOAD

After the no-load operation, turn off the AC main circuit power, and connect the driven machine to the motor. Make sure that the driven machine is in running condition, and that proper safety precaution are followed, then run the motor under load in exactly the same way as the test run.

For preset starting (one-touch operation after setting the frequency) Perform the following beforehand:
(1) Set the frequency and depress $\frac{\text { RUN }}{\text { DATA }}$ to accelerate the motor in the determined time, as described earlier, and to maintain the rpm at the preset frequency. If the acceleration time is set short relative to the load and if the rpm of the accelerating motor is not smooth (anti-stalling function during acceleration is functioning); or if trouble is displayed on the digital operator, set the acceleration time longer.

(2) To decelerate the motor in the preset time and to stop it, depress | STOP |
| :--- |
| SET |

while the motor is rotating. If the deceleration time is set short relative to the load and if the rpm of the decelerating motor is not smooth (anti-stalling function during deceleration is functioning); or if trouble is displayed on the digital operator, set the deceleration time longer.

PRECAUTION

(1) Start the motor after making sure that the motor is stopped. If the operation is started during motor coasting, use the control constant ($\mathrm{Cn}-12$) DC Braking Time at start in table 5.
(2) When a standard motor is driven with the inverter, there is a little increase in motor temperature, noise, and vibration as compared to the operation from the commercial power supply.
(3) The motor cooling effect lowers during low-speed running. The torque needs to be reduced in accordance with the frequency. (For the reduction ratio, refer to the catalog or technical sheet.)
(4) Even with small load, never use a motor whose current exceeds the inverter rating.
(5) When two or more motors are operated, check to be sure that the total motor current is not larger than inverter rating.
(6) When starting and stopping the motor, be sure to use the operation signals (FWD/REV), not the magnetic contactor on the power supply side.

7. FAILURE INDICATION AND DETAILS

As Table 6 shows, the failure that the VS-616GII detects is classified into trouble and alarm. When trouble occurs, the failure contact is output and the operation stops after coasting. When an alarm is issued, the digital operator indicates the alarm for warning. (An alarm is not stored in the inverter.)

Table 6 Falure Indication and Detals

Indication	Failure Indication Item	Description	Fallure Classification
UU Blink	A low voltage being detected	Two seconds are being counted after the detection of low voltage	Alarm
OU Blink	Overvoltage durıng stop	The DC voltage is higher than the specified value	Alarm
OH2 Blink	Inverter overheat is predicted	An overheat signal is entered from the external termınal	Alarm
OL3 Blınk	Overtorque being detected	Operation continues despite overtorque	Alarm
Eb Blink	Both forward run and reverse run commands are closed	Deceleration stop (Not stored internally)	Alarm
UU	Low voltage	The DC voltage is lower than the specified value	Trouble
FU	Fuse blown	The main circuit fuse is blown	Trouble
OC	Overcurrent	A current surge of about 200% or more occurs	Trouble
OU	Overvoltage	The DC voltage is higher than the specified value	Trouble
OH	The radiation fin overheated	The thermo-switch for the radiation fin operates	Trouble
OL 1	Overload	Protect the motor	Trouble
OL 2	Overload	Protect the inverter	Trouble
OL 3	Overtorque	Overtorque causes the operation to stop after coasting	Trouble
Eb	External falure	An external fallure signal stops operation	Trouble
CPF	Control function self-diagnosis function is faulty	When DSPL/ENTR key is depressed. CPF content appears	Trouble
OPE	Illegal constant is set	Constant logic is not coincident	Trouble
-••••	Control function hardware is faulty	Watchdog error	Trouble

7.1 DISPLAYING THE SEQUENCE OF FAILURE OCCURRENCE

Failure items that currently occur and that occurred before the power was turned off can be sequentially indicated by the following procedure:
(1) To indicate the sequence of failure items that currently occur

When Δ is depressed, the sequence of trouble occurrence appears (up to four faults), except for OPE (illegal constant setting) and control function hardware fault.
[Example of Indication]

(2) To indicate the sequence of failure items that occurred before the power was turned off
The VS-616GII uses NV-RAM to store the sequence of failure items that occurred before the power was turned off (when low voltage is detected). Therefore, when the power is turned on again, the sequence of such failure items (up to four) appears on the digital operator display.
[Example of Indication]

After the power is turned on:

1) The first failure item that occurred before the power was turned off appears: Ul OC Blinks 5 seconds
2) The first display: \square [The type of display selected before turning off the power]
3) Depress \triangle + DSPL/ENTR to display the sequence of failure occurrence: Ul OC
4) Depress \triangle U2 OH
5) Depress Δ : Ul OC Returns to 2)
6) Return to the display type selected before depressing $\Delta+$ DSPL/ENTR to display the sequence of failure occurrence: \square

Note: If no failure item occurred before the power was turned off, U1-- appears in step 3).

7. 2 STORAGE FUNCTION AT POWER FAILURE

The VS-616GII uses the internal NV-RAM to store the following items after the power has been turned off. Therefore, when the power is turned on again, the operation can begin with the same state as when the power was turned off.

- Display items in drive mode
- Frequency command from the digital operator
- The sequence of failure items that occurred before the power was turned off (including the content of CPF failure).

8. 1 TROUBLESHOOTING FOR MOTOR SYMPTOM (Cont'd)

(2) Motor stalls during acceleration

APPENDIX 1 STANDARD SPECIFICATIONS

Table 7 Standard Specifications

Inverter Model CIMR-i.]			380 to 460 V							
			H04G2	H0 75G2	H2 2G2	H3 7G2	H55G2	H75G2	H11 G2	H15G2
Output Characteristics	Inverter Capacity KVA		14	21	41	69	103	137	206	274
	Rated Output Current A		18	27	54	9	135	18	27	36
	Over Load Current for one minute		23	34	68	113	169	225	338	45
	Max Applicable Motor Output kW (HP)*	Overload Capacity 125% for one minute	075 (1)	$\begin{gathered} 075 \\ \text { (11) } \\ \hline \end{gathered}$	$\begin{aligned} & 22 \\ & (3) \end{aligned}$	$\begin{aligned} & 37 \\ & \text { (5) } \\ & \hline \end{aligned}$	$\begin{gathered} 75 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (20) \end{gathered}$	$\begin{array}{r} 185 \\ (25) \\ \hline \end{array}$
		Overload Capacity 150% for one minute	$\begin{gathered} 04 \\ 05 \end{gathered}$	$\begin{gathered} 075 \\ (1) \end{gathered}$	$\begin{aligned} & 22 \\ & (3) \\ & \hline \end{aligned}$	$\begin{aligned} & 37 \\ & (5) \end{aligned}$	$\begin{array}{r} 55 \\ (75) \end{array}$	$\begin{gathered} 75 \\ \text { (10) } \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ (15) \end{gathered}$	$\begin{gathered} 15 \\ (20) \end{gathered}$
	Max Output Voltage		3-Phase. 380/400/415/440/460 V (Proportional to input voltage)							
	Rated Output Frequency		50, 60, 72, 90, 120, 180 Hz (up to 396 Hz available)							
Power Supply	Rated Input Voltage and Frequency		$\begin{gathered} \text { 3-Phase } \\ 380 / 400 / 415 / 440 / 460 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$							
	Allowable Voltage Fluctuation		$\pm 10 \%$							
	Allowable Frequency Fluctuation		$\pm 5 \%$							
Control Characteristics	Control Method		Sine wave PWM							
	Frequency Control Range		1.40							
	Frequency Accuracy		Digital command $001 \%\binom{-10$ to $40^{\circ} \mathrm{C}}{+14$ to $104^{\circ} \mathrm{F}}$ Analog command $02 \%\binom{25 \pm 10^{\circ} \mathrm{C}}{77 \pm 18^{\circ} \mathrm{F}}$							
	Frequency Resolution		Digital operator reference 01 Hz . Analog refence $006 \mathrm{Hz/60} \mathrm{~Hz}$							
	Output Frequency Resolution		001 Hz							
	Overload Capacity		125% for one minute or 150% for one minute (Load rate for max applicable motor)							
	Frequency Settıng Signal		0 to $10 \mathrm{VDC}(20 \mathrm{~K} \Omega) 4-20 \mathrm{~mA}(250 \Omega)$							
	Accel/Decel Time		01 to 1800 sec (Accel/Decel time settıng independently)							
	Brakıng Torque		Approx 20%							
	No of V/f Patterns (Total of 16)		4 For general purpose 4 For high starting torque 1 For adjustable pattern 4 For fans and pumps 3 For machıne tools							
Protective Functions	Motor Overload Protection		E'ectric thermal overload relay							
	Instantaneous Overcurrent		Motor coasts to a stop at approx 200% rated current							
	Fuse Blown Protection		Motor coasts to a stop by blown-fuse							
	Overload		Motor coasts to a stop at 125% load for 1 minute							
	Overvoltage		Motor coasts to a stop if converter output voltage exceeds 790 V							
	Undervoltage		Motor coasts to a stop if converter output voltage drops to 420 V or below							
	Momentary Power Falure		Immediately stop by 15 ms and above momentary power fallure (Contınuous system operation during power fallure less than 2 sec$)^{\dagger}$							
	Fin Overheat		Thermostat							
	Stall Prevention		Stall prevention at acceleration /deceleration and constant speed operation							
	Ground Fault		Provided by electronic circuit							
	Power Charge Indication		Charge lamp stays ON until bus voltage drops below 50 V							
Environmental Condrtions	Location		Indoor (protected from corrosive gases and dust)							
	Ambient Temperature		-10 to $40^{\circ} \mathrm{C}$ (not frozen)							
	Storage Temperature ${ }^{1}$		-20 to $60^{\circ} \mathrm{C}$							
	Humidity		$90 \% \mathrm{RH}$ (no condensation)							
	Vibration		1 G less than 20 Hz . up to 02 G at 20 to 50 Hz							

* Our standard 4-pole motor is used for Max Applicable Motor Output
\dagger For 380 to 460 V ride through function up to 2 sec momentary power lailure dvailable by connecting backup capacitor $2200 \mu \mathrm{~F} 400 \mathrm{~V}$ between external terminals (C1) and (C2)
- Temperature during shipping Storing in this temperature for a long period may deteriorate main circuit capacitor cuntact your Yaskawa representative

APPENDIX 2 TERMINAL FUNCTIONS

A2-1 Terminals of Main Circuit

Table 8 Termınal Functions and Voltages of Maın Cırcuit

Termınals	Functions	Voltages	
		380 to 460 V	
		Model CIMR-H04G2 to -H15G2	
L1 (R)	Main circuit input power supply	Three-phase$380 / 400 / 415 / 440 / 460 \mathrm{~V} \text { at } 50 / 60 \mathrm{~Hz}$	
L2(S)			
L3(T)			
T1(U)	VS-616GI output	Three-phase 380/400/415/440/460 V (proportonal to input voltage)	
T2(V)			
T3(W)			
B1	Brakıng resıstor unit	Approx 600 VDC	
B2			
C1	Backup capacıtor for momentary power fallure	Approx 300 VDC (capacitor $2200 \mu \mathrm{~F} 400 \mathrm{VDC}$)	
C2			
E	Ground termınal	--	

A2-2 Terminals of Control Circuit

Table 9 Terminal Functions and Signals of Control Circuit

Termınals	Functions			Levels
1	Forward operation-stop signal		Run at closed. stop at open	
2	Reverse operation-stop signal		Run at closed. stop at open	
3	External fault input		Fault at closed	
4	Fault reset input (external)		Fault reset at closed	
5	Following sequence control commands available to select 5 -step speed setting. Master/Aux selector. Master/Aux selector at forward run. Mastet/Aux selector at reverse run, Energy saving operation, Override. External coastıng stop command. Forward inching operation. Reverse inching operation, Coasting stop command. Speed search from top speed. Speed search from setting value. Accel/decel time selection			
6				
7				
8				
9	One of the following signals avalable to select During running. Zero speed, Synchronized speed. Over-torque. Under voltage (NO)		Contact capacity 250 VAC at 1 A or below 30 VDC at 1 A or below	
10				
11	Sequence control input common terminal		Sequence control input OV	
12	Connection to shield sheath of signal lead		-	
13	Master speed frequency reference input		0 to $+10 \mathrm{~V}(20 \mathrm{k} \Omega)$	
14			4-20 mA (250 ${ }^{\text {) }}$)	
15	Aux frequency reference input		+15 V (Cortrol power supply for frequency setting $\max 20 \mathrm{~mA}$)	
16			0 to $+10 \mathrm{~V} / 100 \%(20 \mathrm{k} \Omega$)	
17			OV	
18	Fault contact output (NONC)	Common	Contact sapacity	250 VAC at 1 A or below 30 VDC at 1 A or below
19		Open at fault		
20		Closed at fault		

(1) Terminals (1), (2) (Forward run command, reverse run command)

Status signals shown in Table 10.

Table 10 Forward/Reverse run command

Forward run command	Reverse run command	Description
Open	Open	Deceleration and stop (Stop indication is delayed 100 ms)
Closed	Open	Forward run
Open	Closed	Reverse run
Closed	Closed	The digital operator flashes Eb and when both are closed for 500 ms or more, it decelerates and stops the motor (not stored internally)

Note: Time chart at forward run is shown in Fig. 9.

Fig. 9 Time chart at forward run
Note: Parenthesized values indicate the number of control constant. (See page 15.)

(2) Terminal (3) (external fault input)

When an external fault is input, the inverter coasts to a stops and the digital operator indicates Eb . Data is stored in the inverter until a fault reset is input.
(3) Terminal (4) (reset fault)

Used to reset fault. This is effective when both forward and reverse comand are open.
(4) Terminals (5), (6), (7), and (8) (sequence functional terminals)

The function of terminal(5) is selected by the value set to system constant 8 . Similarly, the function of terminal (6) is selected by the value set to system constant 9; the function of terminal (7) by the value set to system constant 10 ; the function of terminal (8) by the value set to sytem constant 11. (See Par, 4.7 Terminal Function).

A2-2 Terminals of Control Circuit (Cont'd)

(5) Terminals (9)- (10) (multifunctional contact output)

The output items from terminals (9)- (10) are selected by constant 12. (See Par 4.8 Contact Output Selection Function)

Contact capacity: 250 VAC, 1 A or less 30 VDC, 1 A or less
(6) Terminals (13) and (14) (main speed frequency command)

Used to connect the master speed frequency command. When the master speed frequency command is set with a voltage, connect terminal (13) ; when set with a current, connect terminal (14).
(7) Terminal (16) (auxiliary frequency command)

Used to connect auxiliary frequency command. The function may differ depending on the values set to system constants 8 and 9.
(8) Terminals (18) - (19) - (20) (fault contact output)

When a fault occurs, terminals (18) - (20) close and terminals (19) - (20) open.
Contact capacity: 250 VAC, 1 A or less 30 VDC, 1 A or less

APPENDIX 3 INTERNAL CIRCUIT AND INTERCONNECTION DIAGRAMS

A3-1 With Braking Resistor Unit

VS-616GII Model	Braking Resistor Unit Model	Max No of Units to be Connected
CIMR-H0 4G2	LKEB-H0 75 B	4
CIMR-H0 75 G 2	LKEB-H0 75 B	4
CINR-H2 2 G 2	LKEB-H3 7B	2
CIMR-H3 7G 2	LKEB-H3 7B	2
CIMR-H5 5G2	LKEB-H3 7B	3
CINR-H75G2	LKEB-H3 7B	3
CINR-H11 G2	LKEB-H15B	3
CINR-H15G2	LKEB-H15B	3

APPENDIX 4 SYSTEM CONSTANTS

A4-1 Inverter Capacity Selection (Sn -01)

As Table 11 shows, the inverter capacity has been set already. To use a spare printed circuit board, set the desired capacity.

Table 11 Inverter Capacity Selection

Sn-01 Data	$\begin{gathered} \text { Model } \\ \text { (CIMR-:-...) } \end{gathered}$	Max Applicable Motor Output kW (HP)	Inverter Rated Current A	Motor Rated Current $\quad \mathrm{A}$ (Factory settıng)	Reference Current for Constant Setting* A
10	HO 4G2	04 (05)	18	11	15
11	H075G2	075 (1)	27	17	23
12	H2 2 G 2	22 (3)	54	43	45
13	H3 7G2	37 (5)	9	69	8
14	H55G2	55 (75)	135	103	12
15	H75G2	75 (10)	18	134	15
16	H11G2	11 (15)	27	202	23
17	H15G2	15 (20)	36	267	30

*The reference current for settıng the overtorque detection level [Cn-23] and stall prevention during operation (On-18). (See page 49.)

Table 11 A Model and Code No of Control PC Board

Inverter Voltage	Inverter Model (CIMR-[-.	Control PC Board	
		Model	Code No
$\begin{aligned} & 380 \text { to } \\ & 460 \mathrm{~V} \end{aligned}$	H04G2	JPAC-C360 [-fe**	
	H075G2		
	H22G2	JPAC-C360 [-1]	ETC00876X-S.-itilux
	H37G2		
	H55G2	JPAC-C361 [].]	ETC00877X-S[.]f]XX
	H75G2		
	H11 G 2	JPAC-C362 []f]	ETC00878X-S.]fux
	H15G2		

[^0]
A4-2 Settıng of V/f Pattern Selection (Sn-02)

The V/f pattern selector switch (Sn -02) has been factory-set at the notch (1) for most applications. For specific applications such as fans and pumps, high-starting torques, or machine tools, select the optimum V / f pattern for motor running, according to the load characteristics. (See Table 12.) IF $\mathrm{Sn}-02$ is set to F , arbitrary V/f pattern can be selected with control constants 1 to 7.

Table $12 \mathrm{~V} / \mathrm{f}$ Pattern Selection (15 Patterns)

Application	Specification		$\mathrm{Sn}-02$	V/f Pattern	Appllcatıon	Spec	cification	Sn -02	V/f Pattern
	50 Hz		(0)			50 Hz	Starting Torque Low Starting Torque High	(8) (9)	
	60 Hz	60 Hz Satu- ration 50 Hz Satu- ration	(1) \mathcal{F}^{*} (2)			50 Hz	Starting Torque Low Starting Torque High	(A) (B)	
	72 Hz		(3)				90 Hz	(c)	
	50 Hz	Variable Torque 1 Variable Torque 2	(4) (5)				20 Hz	(D)	
	60 Hz	Variable Torque 2 Variable Torque 1	(6)			180 Hz		(E)	

* See APPENDIX 5 on page 40 to change V / f pattern

Notes 1 Take account of the following conditions and others when selecting V/f pattern

- Pattern matching the voltage-frequency characteristic of the motor
- According to the maximum motor speed
$2 \mathrm{~V} / \mathrm{f}$ pattern for high starting torque should be selected for
- Long wiring distance
- Large voltage drop at start
- AC reactor connected to input or output of the inverter
- Use of motor of the rating below the max

For details, contact Yaskawa representative

A4-3 Run Signal Selection (Sn-04)

The run command and frequency command that are validated by a combination of the lst and 2nd digits differ (See Table 13).
(1) lst digit (frequency command selection)

0 : Runs by the frequency command from the external terminal.
1: Runs by the frequency command from the digital operator.
(2) 2nd digit (run command selection)

0 : Runs by the run command from the external terminal.
l: Runs by the run command from the digital operator.
Table 13 Combination of Frequency and Run Commands
(O effective \times not effective)

Command	System Constant 4	Setting Value (1st and 2nd digits)			
		00	01	10	11
	Forward run command	\bigcirc	\bigcirc	\times	\times
	Reverse run command	\bigcirc	\bigcirc	\times	\times
	External fault	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Fault reset	Note 2	Note 2	\bigcirc	\bigcirc
	Command of termınal (5)	\bigcirc	Note 1	\times	\times
	Command of termınal (6)	\bigcirc	Note 1	\times	\times
	Command of termınal (7)	\bigcirc	Note 1	\times	\times
	Command of terminal (8)	\bigcirc	Note 1	\times	\times
	Master freq command	\bigcirc	\times	\bigcirc	\times
	Aux input	\bigcirc	\times	\times	\times
	Fault contact output	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Contact of termınals (9)-(10)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { 흠 } \\ & \stackrel{0}{0} \\ & \text { O} \end{aligned}$	Freq command	\times	\bigcirc	\times	\bigcirc
	Run key	\times	\times	\bigcirc	\bigcirc
	Jog key	\times	\times	\bigcirc	\bigcirc
	Stop key	Note 3	Note 3	\bigcirc	\bigcirc
	FWD/REV key	\times	\times	\bigcirc	\bigcirc
	$\triangle /$ RESET key	Note 2	Note 2	\bigcirc	\bigcirc
	DRIVE/PRG key	Effective duinrg stop	Effective during stop	Effective during stop	Effective during stop
	REMOTE LED	ON	ON	OFF	OFF
	MONITOR indication	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Note 1: Multi-step speed run, master speed/auxiliary switching, forward master speed/auxiliary switching, reverse master speed/auxiliary switching, override, and inching run commands are invalid.
2. Valid when the forward run command, reverse run command, and DB command are open.
3. When \triangle key and STOP/SET key are depressed at the same time, the motor decelerates and stops while STOP LED flashes. This stop command is stored in the inverter. Therefore, to resume operation, open both the forward run command and reverse run command of the external terminal.
(3) 3rd digit (master-speed frequency command)

Depending on the 3 rd -digit value, the input method of the master-speed frequency command differs as shown in Fig. 10.

Fig. 10 Input method of Master Frequency Command
(4) 4th digit (reverse prohibit)

4th digit $=1$: Disregards the reverse run command from the external terminal or digital operator.

A4-4 Protective Characteristics Selection (Sn-05)
(1) lst digit (operation continues at momentary power failure)
lst digit $=0$: A momentary power failure, when detected, is regarded as a fault in power supply and the operation stops after coasting.
lst digit $=1:$ When a momentary power failure is within 2 seconds, the operation continues; if longer than 2 seconds, the operation stops after coasting.
(2) 2 nd digit (stall or no stall during deceleration)

2nd digit $=0$: Stall during deceleration.
2nd digit $=1$: No stall during deceleration.
(3) 3rd digit (motor protection)
$3 r d$ digit $=0:$ The electronic thermal protector protects the inverter and motor from overheat.
3rd digit $=1:$ The electronic thernal protector protects only the inverter from overload.
(4) 4th digit (motor selection)

4 th digit $=0:$ Protection is made with the overload characteristics of the reduced-torque characteristic motor.
4 th digit $=1:$ Protection is made with the overload characteristics of the constant-torque characteristic motor.
(1) lst digit
lst digit $=0$: No overtorque is detected.
1st digit $=1$: Overtorque is detected (different function from the stall during operation).
The overtorque detection function detects the following condition:
Inverter output current \geqq overtorque detection level (control constant 23 , set to 160% prior to shipment from the factory).
(2) 2nd digit

2nd digit $=0:$ Overtorque is detected during speed synchronization.
2nd digit = 1: Overtorque is always detected (except during stopping and DB).
(3) 3rd digit

3 rd digit $=0$: When overtorque is detected, the digital operator flashes OL3 and continues the operation.
3rd digit = 1: When overtorque is detected, the digital operator flashes OL3 and the operation stops after coasting (regarded as trouble and fault contact is output).

A4-6 Optional Function Selection (Sn-07)

(1) lst and 2nd digits

Sets multiples of the output frequency that is output in the pulse monitor (JOGB-C01 type).

00 : Outputs 6.F (F: output frequency)
01: Outputs 10.F (F: output frequency)
10: Outputs 12.F (F: output frequency)
11: Outputs 36.F (F: output frequency)

A4-7 Terminal Function (Sn-08 to $\mathrm{Sn}-11$)

The function of terminal (5) is selected by the value set to system constant 8. Similarly, the function of terminal (6) is selected by the value set to system constant (9) the function of terminal (7) by the value set to system constant 10 ; the function of terminal (8) by the value set to system constant 11. Note each of these is independently selected.

When set values 0 to 3 are not set to system constants 8 to 11 , the masterspeed frequency command is applied for operation.

Table 14 Termınal Functions

Setting Value	Function	Description $\left(\begin{array}{ll}0 & \text { state signal } \\ 1 & \text { pulse signal }\end{array}\right)$
0	Master/Aux selector	Open 0 Master freq command Closed 0 Aux freq command
1	Master/Aux selector for forward run	When forward run conmand on. Open 0 Master freq command Closed O Aux freq command
2	Master/Aux selector for reverse run	When reverse run command on. Open 0 Master freq command Closed 0 Aux freq command
3	Multi-step speed setting	-
4	Override	Closed 0 Override
5	Inchıng operation	Closed 0 Inching freq selection
6	External coastıng stop command	Closed 0 Coastıng stop
7	Speed search	Closed 1 Speed sea ch from top freq *
8	Speed search	Closed 1 Speed search from setting value*
9	Energy saving operation	Closed 0 Energy saving operation
A	Accel/Decel tume selector	Open 0 Accel/decel is executed by control constants 8 and 9 Closed 0 Accel/decel is executed by control constant 29
B	Inverter overheat prediction	OH 2 blinks on digital operator
C	DC dymamic brake command	Closed 0 Dynamıc trake actıvates if DC dynamıc brake command is closed under the conditions of mın output freq and below at deceleration stop
D	Not used	
E		
F		

*The search function of setting values 7 and 8 works even by pulse input signal of 20 ms and above.

Precautions for Combination of System Constants 8 to 11

When the following combination is set to system constants 8 to 11 , this is regarded as a constant set value error (OPE), OPE is checked when power is supplied and when ENTRY is keyed in.
(1) The set values are not placed in order from small to large. (Except for F, two or more values cannot be set.)
(2) Both search commands of set values 7 and 8 are set.
(3) The forward master speed/auxiliary switching and the reverse master speed/ auxiliary switching are not set in pairs.
(Set the forward master speed/auxiliary switching to constant 8 and the reverse master speed/auxiliary switching to constant 9.)
(4) Multispeed setup is set and master speed/auxiliary switching is not set. (Set the master speed/auxiliary switching to constant 8 and the multispeed setup to constant 9.)

A4-7-1 Description of Functions

(1) Master speed/auxiliary switching function

In both forward and reverse operations, this contact-input signal enables switching the master speed and auxiliary.

Open: The master speed frequency command is made the frequency command.
Close: The auxiliary frequency command is made the frequency command.
(2) The forward master speed/auxiliary switching and the reverse master speed/auxiliary switching functions
The main speed and auxiliary can be switched separately in forward and reverse operations. The forward master speed/auxiliary switching function and the reverse master speed/auxiliary switching function must be used in pairs.

Open: The master speed frequency command is made the frequency command Close: The auxiliary frequency command is made the frequency command.
(3) Multispeed setup function.

The multispeed setup function must be used in a pair with the master speed/ auxiliary switching function. A combination of these terminals makes the frequency command as shown in Table 15.

Table 15 4-step Speed Setting Method

Master/Aux Selector Command	Multı-step Speed Settıng	Frequency Command
Open	Open	Master freq command
Closed	Open	Aux freq command
Open	Closed	Freq command 1^{*} for multi-step speed settıng
$-\quad$ Closed	Freq command 2^{*} for multi-step speed settıng	

[^1](4) Override function

Open: The operation is made by the master speed frequency command (override cut).
Close: Override is carried out as shown in Fig. 11. The overrride gain is given by an auxiliary frequency command (0 to $+10 \mathrm{~V} / 0$ to 200%).

Fig. 11 Block Diagram of Override
(5) Inching function

Close: Only during close, the inching operation with control constant 26 (Setting to 6 Hz prior to shipment from the factory) as the frequency command is carried out. The rotating direction is given by the forward run command or reverse run command. The timing chart in forward and reverse operations are shown in Fig. 12.

Fig. 12 Time chart at Forward and Inching Operations
Note: Parenthesized values indicate the number of control constant.

A4-7-1 Description of Functions (Cont'd)

(6) External coasting stop command function

When the external coasting stop command is closed, the operation depends on the input state of the forward run command and reverse run command.

- When either the forward run command or reverse run command is closed, and the external coasting stop command is also closed, only coasting stop is accomplished and the frequency is maintained.
- When both the forward run command and reverse run commands are open, and the external coasting stop command is closed, coasting stop is accomplished and the frequency is changed to 0 Hz .

(7) Search function (rise detection)

When the search command is made to close, the base is blocked for 0.5 second, then the speed search is made. The operation depends on the selected function either 7 or 8 . Note: functions 7 and 8 cannot be simultaneously selected.
-When 7 is set, the speed search begins with the highest set frequency.
-When 8 is set, the speed search begins with the frequency command that has been set after the search command was input.

Fig. 13 Time chart at Speed search command Input
Note: When using this function by continuous operation mode at momentary stop, hold speed search command externally.
(8) Energy-saving operation function

When the energy-saving operation command is made to close during speed synchronization, energy-saving operation shown in Fig. 14 is carried out. In the energy-saving operation, the output voltage is the value of the energy- saving gain (control constant 30, set to 80% at shipment from the factory) multiplied by the V/f constant set with control constants 1 to 7 .

FORWARD RUN COMMAND

Fig. 14 Time Chart of Energy Saving Run
(9) Acceleration/deceleration time switching function

When the acceleration/deceleration time switching command is input, the acceleration/deceleration time changes. This function is also effective during inching operation.

Open: Operation made with accel/decel time of control constants 8 and 9.
Close: Operation made with acceleration/deceleration time of control constant 29.
(10) Inverter overheat prediction/display function

When the inverter overheat prediction/display command is input, the inverter flashes only OH 2 on the digital operator's display. No other operation is carried out.

A4-7-1 Description of Function (Cont'd)

(11) DC braking (DB) function

When both the forward run commmand and reverse run command are open, and the DC braking command is closed, DC braking operation is carried out.

Fig. 15 Time Chart of DC Dynamic Braking

A4-8 Contact Output Selection Function (Sn-12)

The content to be output through external terminals (9)- (10) is set. Table 16 shows the relationship between the set value of constant 12 and the content to be output.

Table 16 Contact Output Function

Setting Value	Description		
	Name		al Level (Closed)
0	Contact during run	Closed	During run
1	Contact at zero speed	Closed	Zero speed
2	Speed synchronized contact	Closed	Speed synchronızatıon.
3	Overtorque detected contact	Closed	Overtorque detection
4	Contact during UV	Closed	During UV

(1) Contact during operation

The contact is closed when either the forward run command or the reverse run command is closed, or when the inverter is outputting a voltage.
(2) Zero-speed contact

The contact is closed when the inverter output frequency is 0 Hz .
(3) Speed-synchronization contact

The contact is closed when either the forward run command or the reverse run command is closed, and the speeds are synchronized.

Speed-synchronization set condition:
\mid Frequency command input - Output frequency $\mid \leqq 0.5 \%$
Speed-synchronization reset condition:
\mid Frequency command input - Output frequency $\mid \geqq 3 \%$
(4) Overtorque detection contact

The contact is closed when the inverter detects an overtorque.
(5) During low voltage (UV) contact

The contact is closed while the inverter is measuring momentary power failure time when the mode is selected for operation to continue during momentary power failure. The contact is open when the inverter is stopping for a period exceeding the momentary power failure time-compensation period. Use this contact combined with the abnormality contact output.

APPENDIX 5 CONTROL CONSTANTS

(1) V/f constants ($\mathrm{Cn}-01$ to $\mathrm{Cn}-07$)

Sets V/f. Fig. 16 shows the relationship between constants 1 to 7. $\mathrm{V}_{\mathrm{mAX}}$,
V_{C}, and $\mathrm{V}_{\text {min }}$ is standardized with the input voltage of 200 V in $200-\mathrm{V}$ and the input voltage of 400 V in $400-\mathrm{V}$ system. Use the following formula to convert and set $\mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{C}}$, and $\mathrm{V}_{\mathrm{MIN}}$.
$\mathrm{V}_{\mathrm{MAX}}=\mathrm{V}_{\max } \times(200 \mathrm{~V}$ or 400 V$) /$ Vin
$\mathrm{V}_{\mathrm{C}}=\mathrm{Vc} \times(200 \mathrm{~V}$ or 400 V$) / \mathrm{Vin}$
$\mathrm{V}_{\text {MIN }}=\mathrm{V}_{\min } \times(200 \mathrm{~V}$ or 400 V$) / \mathrm{Vin}$
[Vmax, Vc, and Vmin are the actual output
voltages; Vin is input voltage.]

To straighten V/f pattern
When $F_{B}=F_{\text {min }}$ is set. $V c$ setup is invalidated and the output voltages of F_{A} to $\mathrm{F}_{\mathrm{min}}$ become straight under the conditions of $\mathrm{V}_{\mathrm{C}} \geqq \mathrm{V}_{\mathrm{MIN}}$.

Fig. 16 V/f Characteristics by Control Constants 1 to 7

Notes: 1. Parenthesized values indicate the number of control constant.
2. Control constants 1 to 7 can be set only when system constant 2 is F .
3. When constants not satisfying the condition $F_{M A X} \geqq F_{A}$ $>F_{B} \geqq F_{\text {MIN }}$ and $V_{\text {MAX }}>V_{C} \geqq V_{\text {MIN }}$ are set, an OPE (set value error) ocours. This is checked when power is supplied and when DSPL/ENTR is keyed in.

(2) Acceleration constants (Tace) (Cn-08)

Sets the acceleration time during which the inverter output frequency reaches from 0% to 100%.
(3) Deceleration constants (Tdec) ($\mathrm{Cn}=09$)

Sets the deceleration time during which the inverter output frequency changes from 100% to 0%.
(4) DC braking voltage (DBVOL) (Cn-10)

Sets the DC voltage that the inverter outputs at DC braking time in units of 0.1 V .
(5) DC braking time at stopping (DBTIM) (Cn-11)

Sets the braking time in units of 0.1 second during which DC braking is applied at stopping. When the DC braking time is 0 , the operation stops after coasting, with the minimum output frequency (constant 6).
(6) DC braking time at starting (DBTWM) (Cn-12)

Sets the braking time in units of 0.1 second during which DC braking is applied at starting (by inputting a forward run command or reverse run command). When the DC braking time is 0 , acceleration begins with the minimum output frequency.
(7) Frequency command gain (FGAIN) (Cn-13)

Sets the main-speed frequency command gain in units of 0.01 . (See Fig. 17).
(8) Frequency command bias (FBIAS) (Cn-14)

Sets the main-speed frequency command bias in units of 0.1%, (See Fig. 17).
(9) Frequency command upper limit (FOUL) (Cn-15)

Sets the upper limit of the frequency command in ratio to the maximum frequency in units of 1%. (See Fig. 17).
(10) Frequency command lower limit (FOLL) (Cn-16)

Sets the lower limit of the frequency command in ratio to the maximum frequency in units of 1%. (See Fig. 17).
(11) Troublesome frequencies can be blocked by setting in $\mathrm{Cn}-17$ to $\mathrm{Cn}-19$ in units of 0.1 Hz . All frequencies $\pm 1 \mathrm{~Hz}$ of the blocked setting are not available for frequency commands. See page 48 for more frequency refinements.

APPENDIX 5 CONTROL CONSTANTS (Cont'd)

(12) Motor rated current (Im100) (Cn-20)

Sets the motor rated current in units of 0.1A. (The motor rated current is used in the electronic thermal protector to protect the motor.) (See Table 11).
(13) Carrier frequency lower limit (CARRIER) (Cn-12)

Sets the lower limit of the inverter's carrier frequency in units of 1 Hz . Although the carrier frequency depends on the output frequency and load, the minimum carrier frequency is set/here.
Fig. 18 shows the relationship between the carrier frequency and the output frequency.

Fig. 18 Carrier Frequency and Output Frequency
(14) Torque compensation gain (K_{T}) ($\mathrm{Cn}-22$)

Sets the torque compensation gain in units of 0.1.
When the maximum applicable inverter motor has the same capacity as that of the motor actually used, this gain is 1 . When a smaller motor is actually used, the gain is set to 1.0 or more.
(15) Overtorque detection level (Cn-23)

Sets the overtorque detection level in ratio to the reference current (See Table 11) for setting constants in units of 1%. Note the overtorque detection function differs from the stall during operation function.
(16) Frequency monitor gain (K_{F}) ($\mathrm{Cn}-24$)

Sets in units of 0.01 the gain of the frequency-meter output that the F-I monitor (JOGB-C02) outputs. (See Fig. 19).

APPENDIX 5 CONTROL CONSTANTS (Cont'd)

(17) Current monitor gain (K_{I}) ($\mathrm{Cn}-25$)

Sets in units of 0.01 the gain of the ammeter output that the FOI monitor (JOGB-C02) outputs. (See Fig. 19).

Fig. 19 Block Diagram of F-I Monitor

Calibrate the meter as follows:
In PRG mode, when control constant 24 is selected, the maximum frequency (about 10 V) is available at $\mathrm{F}-\mathrm{I}$ monitor terminal 1; when control constant 25 is selected, the inverter rated current (about 6V) is available at F-I monitor terminal 2.

Maximum frequency: About 10 V (1) to (3)
Inverter rated current: About 6 V (2) to (3)
(18) Inching frequency (NFJOG) ($\mathrm{Cn}-26$)

Sets inching frequency in units of 0.1 Hz .
(19) Multispeed-run-frequency commands 1 and 2 (FRKF1 and FREF2) (Cn-27 and $\mathrm{Cn}-28$)
Sets multispeed-run-frequency commands in units of 0.1 Hz .
(20) Acceleration/deceleration time ($\mathrm{Cn}-29$)

Sets the acceleration/deceleration time in units of 0.1 second when the acceleration/deceleration time switching command is closed.

(21) Energy-saving gain (KSENG) (Cn-30)

Sets in units of 1% the level to which the output voltage is controlled in the energy-saving operation.

In the energy-saving operation, the output voltage is given by (V/f set by control constants l to 7 x energy-saving gainl. (See Fig. 20.)

Fig. 20 Output Voltage During Energy-Saving Run

APPENDIX 6 OTHER CONSTANTS (FUNCTIONS)

A6-1 Retry Operation at Fault

When fault occurs (FU, Eb, and CPF excluded) during operation, a retry operation can be carried out by automatically resetting the fault.

Automatic resetting can be tried up to 10 times. Fig. 21 shows the timing chart for retry operation in case of fault.

Fig. 21 Time Chart of Retry Operation at fault
The operation procedure for retry operation in case of fault is shown below.
(1) Depress $\frac{\text { DRIVE }}{\text { PRG }}$ to select the program mode. $\frac{\text { DRIVE }}{\text { PRG }}$ Light off]
(2) Depress $\frac{\text { FWD/REV }}{\substack{\text { MODE }}}$ to select system constant $5 \pi-1$ i.
(3) Select the numeric with \triangle and indicate $5 n-1$ (system constant 3).
(4) Depress $\begin{aligned} & \text { RUN } \\ & \text { DATA }\end{aligned}$ to indicate the internal data of system constant 3.
(5) Set 4 in by operating $\begin{gathered}\triangleright \\ \text { RESET }\end{gathered}$ and Δ.
(6) Depress $\begin{gathered}\text { STOP } \\ \text { SET } \\ \text { (5) }\end{gathered}$ to temporarily store data.
(7) Indicate Bn-n3 by operating $\frac{\text { FWD/REV }}{\text { MODE }}$ and \triangle.

(9) Set the number of times to reset faults by operating $\begin{gathered}\triangleright \\ \text { RESET }\end{gathered}$ and \triangle. (When 5 times is set, it appears as \quad OS.)
(10) Depress STOP $\frac{1}{\text { SET }}$ to temporarily store data.
(11) Operate steps (2) to (6) to return the internal data of $5 \pi-93$ to 0000.
(12) Depress $\frac{\text { DSPL }}{\text { ENTR }}$ to store data.

A6-2 Full Range DC Braking Stop (DB)

The use of the full range $D C$ braking stop (DB) function permits a quick stop without using a braking resistor.

When a stop command is input, DC braking stop is carried out. The DB time at stop is set with control constant 11.

The time chart is shown in Fig. 22.

Fig. 22 Time Chart at DB Stop

The operation procedure for full range $D C$ braking stop function is shown below.

(1) Depress | DRIVE |
| :---: |
| PRG |
| Di', | to select the program mode. [$\frac{\text { DRIVE }}{\text { PRG }}$ Light off]

(2) Depress $\frac{\text { FWD/REV }}{\text { MODE }}$ to select system constant 5
(3) Select the numeric with \triangle and indicate 5 (system constant 3).
(4) Depress $\frac{\text { RUN }}{\text { DATA }}$ to indicate the internal data of system constant 3.
(5) Set 4 in by operating $\begin{gathered}\square \\ \text { RESET }\end{gathered}$ and Δ.

(6) Depress STOP | SET |
| :---: | to temporarily store data.

(7) Depress $\frac{\text { FWD/REV }}{\text { MODE }}$ to indicate A
(8) Depress $\frac{\text { RUN }}{\text { DATA }}$ to indicate the internal data of
(9) Indicate \quad iris by operating $\begin{gathered}\square \\ \text { RESET }\end{gathered}$ and \triangle.

(10) Depress | STOP |
| :---: |
| SST | to temporarily store data.

(11) Operate steps (2) to (6) to return the internal data of 5in- 3 to BCIM.
(12) Depress $\frac{\text { DSPL }}{\text { ENTR }}$ to store data.
(13) After setting, depress $\frac{\text { DRIVE }}{P \text { PRG }}$ to resume the drive mode. [$\frac{\text { DRIVE }}{P \text { PRG }]}$

A6-3 Range to Prohibit Frequency Setting
Frequency is not permitted to be set in a range usually within $\pm l \mathrm{~Hz}$ of the frequency set with constants 17 to 19 . In this range, frequency command cannot be set (see page 42).

The value of this $\pm 1 \mathrm{~Hz}$ range where frequency setting is prohibited can be changed, in a range of 0.0 to 10.0 Hz , in units of 0.1 Hz .

The operation procedure for this purpose is shown below. Operation steps (1) to (6) and (11) to (13) are the same as in Ab-1. So, steps (7) to (10) are shown.

(2) Depress $\frac{\text { FWD/REV }}{\text { MODE }}$ to select system constant $5 \pi-[$ it
(3) Select the numeric with Δ and indicate $50-03$ (system constant 3).

(4) Depress | RUN |
| :--- |
| DATA |
| (3) | to indicate the internal data of system constant 3.

(5) Set $4 \mathbb{I G}$ by operating $\begin{gathered}\square \\ \text { RESET }\end{gathered}$ and Δ.
(6) Depress STOP $\begin{gathered}\text { SET } \\ \text { SET }\end{gathered}$ to temporarily store data.
(7) Indicate Bin- by operating $\frac{\text { FWD/REV }}{\text { MODE }}$ and Δ.
(8) Depress $\frac{\text { RUN }}{\text { DATA }}$ to indicate the internal data of A
(9) Set the required range to prohibit frequency setting by operating
 and \qquad
(When 2.0 Hz is set, it appears as 02.0. .)
(10) Depress $\frac{\text { STOP }}{\text { SET }}$ to temporarily store data.
(11) Operate steps (2) to (6) to return the internal data of $5 n-83$ to $\triangle 0015$.
(12) Depress $\underset{\substack{\text { DSPL } \\ \text { ENTR }}}{\text { to store data. }}$

A6-4 Stall Prevention During Operation

During operation (while the speed is being synchronized), if the inverter output current exceeds the stall prevention during operation level (setting to 160% at shipment from the factory), the output frequency is dropped at a rate of half the predetermined deceleration time.

When the output current drops below the stall prevention during operation level, the output frequency is accelerated to the set value at the specified acceleration time.

The stall prevention during operation level can be set, in units of 1%, in ratio to the reference current for setting constants. (See Table 11 on page 28).

The operation procedure to set or change the stall prevention during operation level is shown below. Operation steps (1) to (6) and (11) to (13) are the same as in par. A 6.1.
(1) Depress $\frac{\text { DRive }}{\text { PRG }}$ to select the program mode. [$\frac{\text { DRIVE }}{\text { PRG }}$ Light off]
(2) Depress $\frac{\text { FWO/REV }}{\text { MODE }}$ to select system constant 5n-E it.
(3) Select the numeric with Δ and indicate $5 n-13$ (system constant 3).

(4) Depress | RUN |
| :--- |
| DATA |
| n | to indicate the internal data of system constant 3.

(6) Depress $\frac{\text { STOP }}{\text { SET }}$ to temporarily store data.

(8) Depress $\frac{\text { RUN }}{\text { DATA }}$ to indicate the internal data of $O n^{-1}$ ig

(9) Set the stall level during run by operating | \triangleright |
| :---: |
| RESET | and Δ. (When 120% is set, it appears as 90 .)

(10) Depress STOP $\frac{1}{\text { SET }}$ to temporarily store data.
(11) Operate steps (2) to (6) to return the internal data of 5n-93 to 005 CD .
(12) Depress $\underset{\substack{\text { DSPL } \\ \text { ENTR }}}{\text { to store data. }}$

To remove the function to prevent stall during operation
To remove the function to prevent stall during operation, set the stall prevention during operation level to 200%.

APPENDIX 7 OPTION

Name	Model (Code No)	Mounting Place	Specifications			
			Terminal Symbol	Function	Level	Output Accuracy
Pulse Monitor	$\begin{gathered} \text { JOGB-C01 } \\ \text { (73616-0051X) } \end{gathered}$	Surface of the controller $\left(\begin{array}{l}\text { Both } \\ \text { monitors } \\ \text { can not be } \\ \text { mounted } \\ \text { at the same } \\ \text { time }\end{array}\right)$	$\begin{aligned} & \text { (1)-(2) } \\ & (\mathrm{OV}) \end{aligned}$	Pulse monitor $\left(\begin{array}{ll}\text { Inverter output } \\ \text { frequency } & F\end{array}\right)$	$\begin{aligned} & \text { Selection of } \\ & 6 \cdot \mathrm{~F} .10 \cdot \mathrm{~F}, 12 \cdot \mathrm{~F} .36 \cdot \mathrm{~F} \\ & \text { possible } \\ & \left(\begin{array}{lll} \text { Vo } 12 \mathrm{~V} .101 & 20 \mathrm{~mA} \\ \text { Duty } & 50 \% & \\ \text { See Sn }-07 \text { of Par A4-6 } \end{array}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & 003 \% \\ & \binom{\text { Sampling }}{\text { for } 1 \mathrm{sec}} \end{aligned}$
F-I Monitor	$\begin{array}{\|c} \text { JOGB-CO2 } \\ (73616-0052 X) \end{array}$		$\begin{aligned} & (1)-(3) \\ & (0 \mathrm{~V}) \end{aligned}$	Frequency monitor $\binom{$ Inverter output) }{ frequency }	Approx 10V/100\% Output Impedance 200Ω	05%
			$\begin{gathered} (2)-(3) \\ (0 \mathrm{~V}) \end{gathered}$	Current monitor $\binom{$ Inverter output }{ current }	Approx 10V/170\% Output Impedance 200Ω	3\%

*See Cn-24, 25 of Par.A5 for adjustment of F-I monitor.
Use BVDC, 1 mA full scale of frequency meter and ammeter.

INTERCONNECTION DIAGRAM WITH F-I MONITOR

APPENDIX 8 CHECK FUNCTION

By selecting constants ($\mathrm{CH}-01$ and $\mathrm{CH}-02$) in PRG mode, both the digital operator LED and external terminals (1) to (8) can be checked.
(1) CH-01 (Checks the digital operator LED)

Select CH-01 and depress RUN/DATA key. Then, all LEDs light.
(2) CH-02 (Checks external terminals (1) to (8)

Select CH-02 and depress RUN/DATA key. Then, the state of external terminals (1) to (8) appears.

Sample display when external terminals (1), (3), (5) and (6) are open and (2), (4), (7) and (8) are closed is shown below.

APPENDIX 9 WIRE SIZE

Table 17 shows the wire sizes used for wiring, Table 18 shows the setup of round pressure terminals.

Table 17 Wire Size

Circuit	VS-616 GII Model	Inverter Capacity kVA	Termınal Symbol	Termina Screw	Wire Size*		Wire Type
					mm^{2}	AWG	
Man	CIMR-H0 4G2	14	(31), (23), ©(E)	M4	35-55	12-10	Power cable 600 V vinylsheathed lead or equivalent
	CIMR-H0 75G2	21					
	CIMR-H2 2G2	41		M4	35-55	12-10	
			(Ġ)(E))		2-55	14-10	
	CIMR-H3 7G2	69	(11)(®)), (2)(S), (12)(T), (1)(C), (12)(V), (13)(14), (31), (2)	M4	35-55	12-10	
			(G)(E)		2-55	14-10	
	CIMR-H5 5G2	103		M5	55-8	10-8	
			(G)(E)		2-55	14-10	
	CIMR-H75G2	137	(L1)(B), (12)(S), (13)(T), (1)(1), (12)(D), (13)(®), (31), (2)	M5	55-8	10-8	
			(G)(E)		2-55	14-10	
	CIMR-H11G2	206	(11)(B), (1)(S), (13)(T), (1)(1), (12)(V), (13)(®), (3), (11)	M6	8-14	8-6	
			(G)(E)		2-5 5	14-10	
	CIMR-H15G2	274	(11)(®), (2)(S), (13)(T), (1)(D), (12)(V), (13)(®), (3), (13)	M6	8-14	8-6	
			(G)(E)		2-5 5	14-10	
Control	-		(1) - (20)	M4	05-2	20-14	Twisted shielded lead for instrumentation

*Wire size should be determined considering voltage drop of leads.
${ }^{+}$Polyethylene-insulated vinyl-sheathed with shielding.

Table 18 Round Pressure Termınals

Wire Size		Termınal Screw	Round Pressure Termınal
mm^{2}	AWG		
05	20	M4	$125-4$
075	18		
125	16		
2	14	M4	2-4
		M4	2-5
		M6	2-6
35	10	M4	3 5-4
		M5	3-5
		M6	3 5-6
55	8	M4	55-4
		M5	5-5
		M6	5 5-6
8	8	M5	8-5
		M6	8-6
14	6	M6	14-6

MEMO

[^0]: * []i] indicates the contents of function. Use the PC board with same model or code No. as spare parts.
 ${ }^{+} x x$ indicates the number of design change. Use the PC board with same number or more as spare parts.

[^1]: *Values set by control constants 27 and 28

